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1 The rate equation formulation

Let M be the number of spin-split orbitals in the molecule. The number of possible electronic configurations
is equal to n= 2M (i.e., each orbital can be empty or occupied). Each configuration can be described by a
set of occupation numbers cα(i), with α=1,
 , n and i=1,
 ,M , where

cα(i)= 0 or 1, (1)

depending on whether the i-th orbital is occupied or not. Call Pα the probability of the α configuration,
with Pα≥ 0 and

∑

α=1
n

Pα=1.

Under certain approximations, which neglect memory effects and discard correlations between the elec-
trodes and the molecule, the rate equation governing the change in the configuration probabilities over time
can be expressed as [1,2,3]

dPα

dt
=−Pα

∑

β�α

Γα→β+
∑

β�α

Γβ→αPβ , (2)

where Γα→β is the rate of the α → β transition. Equation (2) is the well-known Pauli master equation
[4]. We note here that there are several ways to derive this equation from fundamental theories, such as
nonequilibrium quantum statistical mechanics [5,6,7], as well as from a semiclassical Boltzmann kinetic
equation [1]. Here, rather than repeating those standard derivations, we focus on the use of the rate equation
to compute transport proeperties in the context of the experiments reported in the main text. The main
goal is to obtain expressions for the charge current across the molecule in different asymptotic regimes.

We can express Eq. (2) in matrix form,

dPα

dt
=
∑

β

ΛαβPβ , (3)

where

Λαβ=

{

−
∑

γ�α
Γα→γ , if α= β

Γβ→α, if α� β
. (4)

Notice that, consistent with the normalization condition, we have

∑

α=1

n
dPα

dt
= −

∑

α=1

n

Pα

∑

β�α

Γα→β+
∑

α=1

n
∑

β�α

Γβ→αPβ (5)

= −
∑

α=1

n

Pα

∑

β�α

Γα→β+
∑

β=1

n

Pβ

∑

α� β

Γβ→α (6)

= 0, (7)

implying that
∑

α=1

n

Λαβ=0, (8)

as it can be easily verified. On the other hand,

∑

β=1

n

Λαβ = −
∑

γ�α

Γα→γ+
∑

β�α

Γβ→α (9)

=
∑

β�α

(Γβ→α−Γα→β). (10)
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Thus, if Γβ→α=Γα→β for all transitions, then the r.h.s. of this equation is equal to zero. This means that
a trivial stationary solution exits where Pα = 1/n for all α= 1, 
 , n. However, when Γβ→α � Γα→β, other
nontrivial stationary solution exist as well.

2 Stationary solutions

In order to obtain a stationary solution to the rate equations set

dPα

dt
=0 (11)

for all α=1,
 , n. This implies
∑

β

ΛαβPβ=0. (12)

Thus, to find the set of stationary probabilities {Pα}, one needs to find the right eigenvector corresponding
to the zero eigenvalue of the matrix Λ.

3 Transition rates

Let Eα be the total energy of the molecule and Nα be the total number of electrons in the α configuration.
When an electron hops from one of the leads and into the molecule, energy conservation requires

ε+Eα=Eβ , (13)

where α(β) is the molecule’s configuration before(after) the hopping and ε is the energy of the electronic
state in the lead. For this transition to take place, the state with energy ε in the lead must have a finite

occupation number, namely f
(

ε− µl

kBT

)

> 0, where µl is the lead’s chemical potential (l=R, L) and T is the

temperature. Here, f(x) denotes the Fermi-Dirac distribution,

f(x) =
1

ex+1
. (14)

In the opposite case, when an electron hops from the molecule and into the lead, we have

Eα= ε+Eβ. (15)

Now, the occupation number of the state with energy ε must be such that f
(

ε− µl

kBT

)

< 1.

Call γR and γL the level widths due to the coupling to the right and left leads, respectively. We can split
the transition rate into two contributions,

Γα→β=Γα→β
R +Γα→β

L , (16)

where [1,2,3]

Γα→β
l =



















(γl/~) f
(

Eβ −Eα − µl

kBT

)

, if Nβ=Nα+1 and dH(cβ, cα)= 1

(γl/~)
[

1− f
(

Eα −Eβ − µl

kBT

)]

, if Nβ=Nα− 1 and dH(cβ , cα) = 1

0, otherwise

, l=R,L, (17)

where dH(cβ , cα) is the Hamming distance between the binary sets cβ and cα. Namely, only transitions
where the number of electrons in the molecule changes by one are allowed. Notice that the bias voltage is
equal to V = (µL − µR)/e, where e denotes the electron charge. Equation (17) can be derived in a number
of ways, with the most standard being Fermi’s Golden Rule or time-dependent perturbation theory on the
level widths γR and γL.
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The rate equation approach is valid when kBT ≫ γR,L (since it assumes a perfectly sharp energy lever in
the molecule), and when the tunneling through the molecule is sequentially incoherent. Below, we discuss
the validity of the rate equation in more detail.

Implicit in Eq. (17) is the assumption that the molecule’s energy levels are sharp, such that γR, γL are
much smaller than other energy scales of the problem, such as kBT , eV , and the separation of energy levels
in the molecule.

4 Current

The current coming from the left lead is equal to

IL=−e
∑

α,β

∆Nα→β Γα→β
L Pα, (18)

where ∆Nα→β=Nβ −Nα.

5 Total energy

The total energy in the molecule can be broken down as follows (constant charging energy model):

Eα=
1

2
Nα(Nα− 1)Ec− eVgNα+

∑

i=1

M

cα(i) εi, (19)

where Ec is the charging energy, Vg is the gate voltage, and {εi}i=1,
 ,M
are the energies of the orbitals.

6 Single-level case

Let us apply this formulation compute the stationary current of a molecule with a single orbital (spinless
case), in which case M = 1 and n= 2. P0(1) corresponds to the probability of the empty(filled) state. The
stationary problem is defined by the matrix

Λ=

(

−Γ0→1 Γ1→0

Γ0→1 −Γ1→0

)

, (20)

where

Γ0→1=Γ0→1
R +Γ0→1

L (21)

and

Γ1→0=Γ1→0
R +Γ1→0

L , (22)

with

Γ0→1
l =(γl/~) f

(

E1−E0− µl

kBT

)

, l=L,R, (23)

and

Γ1→0
l =(γl/~)

[

1− f

(

E1−E0− µl

kBT

)]

, l=L,R. (24)

The eigenvector of the Λ matrix with zero eigenvalue corresponds to

P0=
Γ1→0

Γ1→0+Γ0→1
=

~Γ1→0

γR+ γL
(25)

and

P1=
Γ0→1

Γ1→0+Γ0→1
=

~Γ0→1

γR+ γL
. (26)

4 Section 6



The current coming from the left lead is equal to

IL = −e (P0Γ0→1
L −P1Γ1→0

L ) (27)

= −
e~

γR+ γL
(Γ1→0Γ0→1

L −Γ0→1Γ1→0
L ) (28)

= −
e~

γR+ γL
(Γ1→0

R Γ0→1
L −Γ0→1

R Γ1→0
L ) (29)

= −
e

~

γR γL
γR+ γL

{[

1− f

(

E10− µR

kBT

)]

f

(

E10− µL

kBT

)

− f

(

E10− µR

kB T

)[

1− f

(

E10− µL

kBT

)]}

(30)

= −
e

~

γR γL
γR+ γL

[

f

(

E10− µL

kBT

)

− f

(

E10− µR

kBT

)]

, (31)

where E10=E1−E0=−eVg+ ε1.

6.1 Finite level width

When the broadening of the energy level is not negligible, we have to modify the calculations to account for
the uncertainty in ǫ1. Let γ be the total level width and D1(ε) the density of state profile associated to the
single-level configuration; for instance, consider the Lorentzian profile

D1(ε) =
1

π

γ/2

(ε− ε1)2+(γ/2)2
, (32)

with
∫

dεD1(ε)= 1. The modified expressions for the transition rates are

Γ0→1
l =(γl/~)

∫

dεD1(ε) f

(

E1−E0− µl

kBT

)

, l=L,R, (33)

and

Γ1→0
l =(γl/~)

∫

dεD1(ǫ)

[

1− f

(

E1−E0− µl

kBT

)]

, l=L,R, (34)

where

E1−E0=−eVg+ε. (35)

Notice that

Γ0→1
R +Γ1→0

R =(γR/~)

∫

dεD1(ε)= γR/~ (36)

and

Γ0→1
L +Γ1→0

L =(γL/~)

∫

dεD1(ε)= γL/~. (37)

Therefore,

Γ0→1+Γ1→0=(γR+ γL)/~, (38)

P0 =
1

γR+ γL

∫

dεD1(ε)
∑

l

γl

[

1− f

(

E1−E0− µl

kB T

)]

(39)

=
1

γR+ γL

∑

l

γl

∫

dǫεD1(ε+ eVg)

[

1− f

(

ε− µl

kBT

)]

(40)

and

P1 =
1

γR+ γL

∫

dεD1(ε)
∑

l

γl f

(

E1−E0− µl

kBT

)

(41)

=
1

γR+ γL

∑

l

γl

∫

dεD1(ε+ eVg) f

(

ε− µl

kBT

)

. (42)
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Going back to the expression defining the current through the left lead, we find

IL = −e (P0Γ0→1
L −P1Γ1→0

L ) (43)

= −
e

~

1

γR+ γL
(Γ1→0Γ0→1

L −Γ0→1Γ1→0
L ) (44)

= −
e

~

1

γR+ γL
[(Γ1→0

R +Γ1→0
L ) Γ0→1

L − (Γ0→1
R +Γ0→1

L ) Γ1→0
L ] (45)

= −
e

~

1

γR+ γL
[Γ1→0

R Γ0→1
L −Γ0→1

R Γ1→0
L ] (46)

= −
e

~

γR γL
γR+ γL

∫

dεD1(ε)

∫

dε′ D1(ε
′)

{[

1 − f

(

−eVg+ ε− µR

kBT

)]

f

(

−eVg+ ε′− µL

kBT

)

−

f

(

−eVg+ ε− µR

kBT

)[

1− f

(

−eVg+ ε′− µL

kBT

)]}

(47)

= −
e

~

γR γL
γR+ γL

∫

dεD1(ε)

∫

dε′D1(ε
′)

{

f

(

−eVg+ ε′− µL

kB T

)

− f

(

−eVg+ ε− µR

kBT

)}

(48)

= −
e

~

γR γL
γR+ γL

∫

dεD1(ε)

[

f

(

−eVg+ ε− µL

kBT

)

− f

(

−eVg+ ε− µR

kBT

)]

(49)

= −
e

~

γR γL
γR+ γL

∫

dεD1(ε+ eVg)

[

f

(

ε− µL

kBT

)

− f

(

ε− µR

kBT

)]

(50)

= −
e

h

γR γL
γR+ γL

∫

dε
γ

(ε− ε1+ eVg)2+(γ/2)2

[

f

(

ε− µL

kBT

)

− f

(

ε− µR

kBT

)]

. (51)

This expression generalizes the previous one, Eq. (31), to include a finite level width γ. It is straightforward
to check that Eq. (51) recoves Eq. (31) when γ→ 0.

It is natural to assume that the total level width can be broken into three components,

γ= γR+ γL+ γ0, (52)

where γ0 represents the broadening caused by effects other than the leakage of charge through the leads.

6.2 Adding spin

To add spin, we split the configuration where the molecule level is occupied into two (↑, ↓), resulting in a
total of three configurations: i= 0, ↑, ↓ (we forbid double occupancy by assuming that the charging energy
Ec is a very large energy scale, namely, Ec≫ kBT , eV , |ε1|). Let us assume that the molecular level is spin
degenerate. Then, the total current through the left lead is given by the expression

IL = −e [P0 (Γ0→↑
L +Γ0→↓

L )−P↑Γ↑→0
L −P↓Γ↓→0

L ]. (53)

The rate equations are

dP0

dt
= −P0 (Γ0→↑+Γ0→↓) +P↑Γ↑→0+P↓Γ↓→0, (54)

dP↑

dt
= −P↑Γ↑→0+P0Γ0→↑, (55)

dP↓

dt
= −P↓Γ↓→0+P0Γ0→↓. (56)
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Solving for the steady state yields

P0=
Γ↑→0Γ↓→0

Γ↑→0Γ↓→0+Γ0→↑Γ↓→0+Γ0→↓Γ↑→0
, (57)

P↑=
Γ0→↑Γ↓→0

Γ↑→0Γ↓→0+Γ0→↑Γ↓→0+Γ0→↓Γ↑→0
, (58)

and

P↓=
Γ0→↓Γ↑→0

Γ↑→0Γ↓→0+Γ0→↑Γ↓→0+Γ0→↓Γ↑→0
. (59)

Assuming spin degeneracy in the leads, we find

Γ0→↑
l =Γ0→↓

l =(γl/~)

∫

dεD1(ε) f

(

E1−E0− µl

kBT

)

≡Γ0→1
l , l=L,R, (60)

and

Γ↑→0
l =Γ↓→0

l =(γl/~)

∫

dεD1(ε)

[

1− f

(

E1−E0− µl

kB T

)]

≡Γ1→0
l , l=L,R. (61)

Therefore,

Γ0→↑=Γ0→↓=

∫

dεD1(ε)[γR fR(ε)+ γL fL (ε)]≡Γ0→1 (62)

and

Γ↑→0=Γ↓→0 =

∫

dεD1(ε)[γR+ γL− γR fR(ε)− γL fL (ε)]/~ (63)

= (γR+ γL)/~−

∫

dεD1(ε)[γR fR(ε)+ γL fL (ε)]/~ (64)

= (γR+ γL)/~−Γ0→1≡Γ1→0, (65)

where we introduced

fl(ε)= f

(

E1−E0− µl

kBT

)

. (66)

Notice that rates and probabilities do not depend on spin. Thus, we can recast the problem in terms of P0

and P1=P↑+P↓. Then, we find

P0=
Γ1→0

Γ1→0+2Γ0→1
(67)

and

P1=
2Γ0→1

Γ1→0+2Γ0→1
. (68)

Plugging them into the expression for the current, we get

IL = −e (2P0Γ0→1
L −P1Γ1→0

L ) (69)

= −2e
Γ1→0Γ0→1

L −Γ0→1Γ1→0
L

Γ1→0+2Γ0→1
(70)

= −2e
Γ1→0
R Γ0→1

L −Γ0→1
R Γ1→0

L

(γR+ γL)/~+Γ0→1
(71)

= −2
e

h

γR γL
(γR+ γL)+ ~Γ0→1

∫

dε
γ

(ε− ε1+ eVg)2+(γ/2)2

[

f

(

ε− µL

kBT

)

− f

(

ε− µR

kBT

)]

, (72)

where

Γ0→1 =

∫

dε
γ

(ε− ε1+ eVg)2+(γ/2)2

[

γR f

(

ε− µL

kBT

)

+ γL f

(

ε− µR

kB T

)]

/~. (73)
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Notice that because of the term Γ0→1 in the denominator of the prefactor in Eq. (72), the expression
for the current in the presence of spin is not exactly equal to twice that for the spinless case. However,
if we are only interested in linear response, we can set µL = µR = µ in Eq. (73), in which case we obtain
Γ0→1≈ (γR+ γL)/~, provided that ε1− eVg< µ (namely, when the energy level is brought below the Fermi
energy in the leads). Then, the factor of 2 is approximately cancelled and we recover the expression for the
spinless current. The current for the spinfull case is only exactly equal to twice that for the spinless case
when the charging energy in the molecule is zero (non-interacting limit), in which case conductance through
the molecule is spin degenerate.

7 Exact solution of the single-level case (spinless)

It is possible to solve exactly the fully coherent single-level case by using the Keldysh non-equilibrium
technique [7], or even scattering theory, since no many-body interactions are present [8]. The result is the
following: the probability of the level to be occupied is equal to

P1=
∑

l

γl
γR+ γL

∫

dε

2π
f

(

ε− µl

kBT

)

γ

(ε− ε1+ eVg)2+(γ/2)2
, (74)

where γ = γR + γL (absence of any level broadening other than leakage of charge through the leads). The
probability of the empty level configuration is P0=1−P1. The expressions for the probabilities are identical
to those obtained with the rate equations after the broadening of the energy level is incorporated.

The fact that the coherent and incoherent formulations yield the same results for the probabilities is not
surprising. For single channel leads and a single level in the molecule, interference plays no role since there
is only one conduction path. When the molecule has multiple independent paths for electrons to hop in
and out, then the coherent and incoherent predictions depart, since interference between paths can result in
enhancement or depletion of certain configuration occupations.

An expression for the current was derived by Jauho, Wingreen, and Meir [9] using the Keldysh Green’s
function technique. Their result is

IL = −
e

h

∫

dε
γR γL

(ε− ε1+ eVg)2+(γ/2)2

[

f

(

ε− µL

kBT

)

− f

(

ε− µR

kB T

)]

. (75)

Contrary to our previous derivation using rate equations, this expression fully takes into account coherence.
Yet, Eq. (75) and Eq. (51) are identical, provided that we set γ= γR+ γL (namely, no level broadening other
than that due leakage through the leads). To some extend this should come as a surprise, as the coherent
transport formulation contains incoherent, sequential regime as a limit.

Notice that for the spinfull case, one simply need to insert a factor of 2 on the right-hand-side of Eq. (75).

Asymptotic limits for the current

Notice that

f

(

ε− µL

kBT

)

− f

(

ε− µR

kB T

)

=
sinh

(

eVb

2kBT

)

cosh
(

ε+EF

kBT

)

+ cosh
(

eVb

2kBT

), (76)

where eVb= µL− µR and EF =(µL+ µR)/2. Defining ε′= ε− ε1+ eVg, we can then rewrite Eq. (75) as

IL=−
e

~

γR γL
γR+ γL

∫

dε′D(ε′)







sinh
(

eVb

2kBT

)

cosh
(

ε′+ ε1− eVg +EF

kBT

)

+ cosh
(

eVb

2kBT

)





, (77)

where

D(ε′)=
1

π

γ/2

ε′ 2+(γ/2)2
. (78)
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It is easy to show that
∫

dε′D(ε′) = 1. (79)

Without loss of generality, we can set eVg=EF . Thus, ε1 becomes the position of the energy level with
respect the Fermi energy in the leads at zero bias. Then,

IL=−
e

~

γR γL
γR+ γL

sinh

(

eVb

2kBT

)
∫

dε′D(ε′)
1

cosh
(

ε′+ ε1

kBT

)

+ cosh
(

eVb

2kBT

). (80)

Let us look at some asymptotic limits.

• γ≪ e |Vb|≪ kBT≪|ε1|: Weak broadening, finite bias, large temperature.

IL ≈ −
e

~

γR γL
γR+ γL

(

eVb

2kBT

)
∫

dε′D(ε′)
1

cosh
(

ε′+ ε1

kBT

)

+1
(81)

≈ −
e

~

γR γL
γR+ γL

(

eVb

kBT

)

e−ε1/kBT . (82)

The current in this case shows an activation behavior, with the activation energy being the offset
between the energy level in the molecule and the Fermi energy in the leads. Linear bias regime. On
resonance, we find

IL≈−
e

~

γR γL
γR+ γL

(

eVb

kBT

)

. (83)

• γ≪|ǫ1|≪ kBT≪e |Vb|: Weak broadening, intermediate temperature, large bias, nearly on resonance.

IL ≈ −
e

~

γR γL
γR+ γL

sinh

(

eVb

2kBT

)
∫

dε′D(ε′)
1

1+ cosh
(

eVb

2kBT

) (84)

≈ −
e

~

γR γL
γR+ γL

. (85)

The current is approximatelly temperature and bias independent (non-linear bias regime).

• γ≪ kBT ≪|ǫ1|≪ e|Vb|: Similar to the previous case, more off-resonance.

IL ≈ −
e

~

γR γL
γR+ γL

e e|Vb|/2kBT

2

∫

dε′D(ε′)
1

cosh
(

ε′+ ε1

kBT

)

+ e e|Vb|/2kBT/2
(86)

≈ −
e

~

γR γL
γR+ γL

. (87)

The current is again approximatelly temperature and bias independent.

• γ≪ kBT ≪ e|Vb|< |ǫ1|: Similar to the previous case, but even more off-resonance.

IL ≈ −
e

~

γR γL
γR+ γL

e e|Vb|/2kBT

2

∫

dε′D(ε′)
1

cosh
(

ε′+ ε1

kBT

)

+ e e|Vb|/2kBT/2
(88)

≈ −
e

~

γR γL
γR+ γL

e (e|Vb|/2−|ε1|)/kBT . (89)

The current shows activation behavior and is highly non-linear.

• γ, e|Vb|, |ǫ1|≪ kBT : High-temperature regime.

IL ≈ −
e

~

γR γL
γR+ γL

(

eVb

2kBT

)
∫

dε′D(ε′)
1

2
(90)

≈ −
e

~

γR γL
γR+ γL

(

eVb

4kBT

)

. (91)
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The current decreases with the inverse of the temperature (linear bias regime).

• kBT ≪ γ: Low-temperature regime; strong broadening.

IL ≈ −
e

~

γR γL
γR+ γL

∫

−ε1−eVb/2

−ε1+eVb/2

dε′D(ε′) (92)

≈ −
2e

h

γR γL
γR+ γL

[

arctan

(

−ε1+ eVb/2

γ/2

)

− arctan

(

−ε1− eVb/2

γ/2

)]

. (93)

Notice that Eq. (93) is the starting point of a well-known theoretical description of electronic transport
in “soft” molecular electronics [10,11]. The current is temperature independent and becomes linear
with the bias voltage when e|Vb|≪ γ:

IL≈−
e2

h

4γR γL
γ (γR+ γL)

Vb. (94)

8 Conclusions

Given that for single-channel, single-level conductance both fully coherent and sequentially incoheren
approaches lead to the same expression for the current, we can conclude that the most general expres-
sion (at low bias) is given by

IL=−
e

h

γR γL
γR+ γL

∫

dε
γ

(ε− ε1+ eVg)2+(γ/2)2

[

f

(

ε− µL

kBT

)

− f

(

ε− µR

kBT

)]

, (95)

where we allow the total level width to include some broadening due to energy relaxation mechanisms other
than leakage through the leads, namely, γ= γR+ γL+ γ0.
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